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The square lattice Ising model with a free surface 
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ACT 2600, Australia 
0 Department of Mathematics, University of Newcastle, Newcastle, NSW 2308, Australia 

Received 17 July 1979 

Abstract. Using the appropriately generalised finite lattice method, series expansions of the 
layer (xl) and local (xll)  susceptibilities of the square lattice king model have been 
obtained. They extend existing series by 3 and 13 terms for X I  and xl1,  respectively. Series 
analysis yields the exponent estimates y1 = 1.375+0.005 and y l l  =0.00+0.01, in 
agreement with scaling predictions. Repetition of the analysis used in the analogous 
self-avoiding walk problem confirms the breakdown of the renormalisation group scaling 
relation 711 = Y - 1 for the square lattice self-avoiding walk problem found in an earlier 
study. 

1. Introduction 

In this paper the finite lattice method (de Neef 1975) has been used to extend series 
expansions for the reduced, isothermal, layer susceptibility x1 and reduced, isothermal, 
local susceptibility xll of the square lattice Ising model. The model is described by the 
Hamiltonian 

I I 

This is the usual Ising spin Hamiltonian with the addition of a surface magnetic field H I ,  
which is parallel to the bulk magnetic field H but acts only on the surface spins, as 
implied by the prime on the summation. 

The surface magnetic field allows the definition of two additional susceptibilities, the 
reduced isothermal layer susceptibility x1 where p m 2 x l  = (-d2G/dHdHI) where G is 
the Gibbs free energy, and the reduced isothermal local susceptibility xI1, where 
pm2Xll = -dZG/aH:, in addition to the bulk susceptibility x = -d2G/aH2. For these 
two additional susceptibilities we define corresponding exponents y1 and yll, respec- 
tiyely, that is, x1 - ( T  - TJY1 and xI1 - ( T  - T,)-'" as T + T,+, where tanh(J/kT,) = 
d2- 1, as in the bulk case (McCoy and Wu 1973). 

The finite lattice method for obtaining high-temperature series expansions for 
model systems on the square lattice was obtained by de Neef (1975) using heuristic 
arguments. The first description of the combinatorial enumeration implicit in the 
method was given by de Neef and Enting (1977) although some of the relevant results 
go back to the work of Hijmans and de Boer (1955). An alternative form of the finite 
lattice method was described by Enting and Baxter (1977), and Enting (1978a) has 
constructed generalised Mobius functions to describe the combinatorial factors which 
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are common to the two forms of the finite lattice method. The formalism has 
subsequently been extended to include low-temperature expansions (Enting 1978b). 

In the finite lattice method, series expansions are obtained by combining the 
partition functions or free energies of various finite rectangular sublattices of the infinite 
square lattice. The formal description below is based on using a sum of free energies. It 
is usually convenient to modify the formalism to work with reduced free energies. This 
is essentially a matter of ignoring the various trivial factors such as In cosh pJ .  The other 
main modification is to exponentiate the expressions for the (reduced) free energy as a 
linear combination of (reduced) free energies for finite lattices, thus obtaining the 
(reduced) partition function series as a product of powers of finite lattice (reduced) 
partition functions. Working with products of partition functions usually provides the 
computationally desirable feature that only integers are needed in the calculations. 

Using the finite lattice method we have extended the recently obtained series 
expansion of x1 (Whittington et a1 1979a) from 14 to 17 terms, and have extended the 
expansion of ,yll (Binder and Hohenberg 1972) from 10 to 23 terms. 

These extended series allow us to estimate the exponent y1 with greater precision 
than heretofore, and we obtained the estimate y1 = 1.375 f 0.005, in precise agreement 
with the scaling prediction y = 12. For the local susceptibility xll ,  McCoy and Wu 
(1973) have obtained the exact result y11 = 0, corresponding to a logarithmic diver- 
gence. While there is therefore little to be gained by a series estimate of y l l ,  this series 
expansion is of considerable utility in testing the method of analysis used by Barber et a1 
(1978) in their analysis of some surface scaling properties of the self-avoiding walk 
(SAW) analogues of x1 and xll. In Barber et a1 (1978) the surface scaling relation 
2yl - yll  = y -t- v (Barber 1973) and the renormalisation group (RG) scaling relation 
yll = v - 1 (Bray and Moore 1977) were tested by a variety of methods of series analysis 
for the square and simple cubic lattice SAW models. For the square lattice Ising model 
both these relations are satisfied (Whittington et a1 1979a), but for the SAW model on 
the square lattice it was found that, while surface scaling appears to hold, the RG scaling 
relation failed by an amount 8 = 0.05 i.O*Ol, where 

In this paper we have employed the same method of analysis as Barber et a1 (1978) 
but applied it to the analogous square lattice Ising series. For xll the Ising and SAW 
series were of identical length (23 terms) while for x1 the Ising series is of length 17 
terms compared to 21 for the SAW series. 

Our Ising series analysis clearly indicates the validity of both surface scaling and RG 

scaling, thus strengthening considerably the earlier conclusions of Barber et a1 (1 978) 
that RG scaling fails for the square lattice SAW model. 

In  the next section we describe the derivation of the series expansions by the finite 
lattice method, and in § 3 we perform the analysis. Section 4 consists of a summary and 
discussion. 

= yI1 - v + 1. 

2. Series derivation 

The finite lattice method starts from the general form of series expansions for the free 
energy on a graph g as a sum of cluster weights, 

f ( g )  = c h(g’ ) t (g’ ,  8 )  
g’=g 

where t (g’ ,  g )  is the number of ways g’ can be embedded in g. 
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The finite lattice method is useful in the case where 
(i) h(g‘) is zero if g’ is disconnected, and 

(ii) h(g’) can be used as the basis for a series expansion. 
That is, for any finite power of the expansion variable, only a finite number of graphs 
contribute. 

In these circumstances, (2.1) can be resummed for square lattice systems to give an 
expression of the same form but involving only rectangular graphs: 

where 

t ( [ i ,  j l ,  [m,  n l )  = ( m  - i + l ) ( n  - j + 1) l C m , j < n  

= O  otherwise. (2.3) 
The [i, j ]  denote rectangles of i sites by j sites. Equation (2.2) can be inverted to give 

(2.4a) 

(2.4b) 

q(i, m ) =  1 i = m or i + 2 =  m 

= -2 i + l = m  ( 2 . 4 ~ )  

= O  otherwise. 

For large lattices we let m, n +CO and find ‘bulk’ free energies from 

lim f [ m ,  n ] / m n  -.C h[i ,  j ] .  
M,N+m i,i 

Similarly Enting (1978a) has shown how certain surface contributions can be obtained 
by extracting terms proportional to m or n as m, n +CO.  

To obtain more general surface properties such as surface susceptibilities the 
boundaries have to be considered explicitly as having interactions different from those 
in the bulk. The simplest arrangement is shown in figure 1 .  We must consider factors 

0 0 0 0 0 o . . .  

Figure 1. A typical graph required to calculate surface properties, in this case f*[4, 31. 
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f*[m, n ] ,  h*[m, n ]  for sublattices with one edge lying on the boundary. In this case (2.2) 
becomes 

f*[m,  n ] =  1 1 ( m - i + l ) { h " [ i , j ] + ( n - j ) h [ i , j ] } .  
i s m  j s n  

Defining 

t * ( [ i ,  j ] ,  [m, n ] )  = ( m  - i + 1) m a c '  n a j  

= O  otherwise, 
its inverse is 

v*( [ i ,  il, [m,  n l )  = T(c', m)'%, n )  
where 

5(i ,  n )  = 1 j = n  

= -1 j - t l = n  

= O  otherwise. 

If x = tanh /3H1 and y = tanh pH then (xll - 1)/2 is the coefficient of x 2  in the free 
energy expansion, and x1 -xl l  is the coefficient of xy. 

None of the h[i,  j ]  involves x so that xl, xll can be obtained from sums of h*[i, j ]  
alone. 

The use of connected graph expansion formalisms for susceptibility is based on the 
formalism of Domb (1972, 9 6).  This formalism helps determine the cut-off of the 
expansion. Expanding in powers of Y = tanh p J  the contribution of h*[i, j ]  to xll  is at 
least of order Y ~ ~ ~ ~ - ~  while the contribution to x1 is at least of order ui+'-', 

Since the finite lattice free energies are obtained using transfer matrix methods, the 
natural cut-off for the expansion is in terms of a maximum 'width' of rectangle. This 
width may be chosen to be either parallel or perpendicular to the boundary. 

For matrices of dimension 2k  we can evaluate h*[i,  j ]  for all i, j such that is k or 
j -s k.  This means that xll is correct to Y ~ ~ - ~  and x1 is correct to u 2 k - - 1  (inclusive). 

For x l l  we use the sum Z?kl Z:"2-i h*[i, j ]  and extract the coefficient of x 2 ,  while 
for x1 we form the sum L'fkl Z;2:1-ih*[i,j] and extract the coefficient of xy, 
where in both cases 

h*[i,jI= C C v*([p,qI,[i,jI){f*[p,qI- C' 1' ( p - m + ~ ) ( q - n ) h [ m , n I } .  

Since h[m, n ]  is of order Y ~ ( ' ~ + ~ - ' )  the primed summations can be truncated at the 
appropriate limit for the particular calculation. 

In this way we have obtained 17 terms in the expansion of x1 = Zna0 cL1)un, where 
U = tanh(J/kT), and 23 terms in the expansion of ,yll = C n a o  c(nl,l)unl and these are 
shown in table 1. They confirm the earlier work of Whittington et a1 (1979a) and 
indicate a typographical error in the coefficient of tiio in the series for xll given by 
Binder and Mohenberg (1972). 

p s i  q s ]  n i s p  n s q  

3. Series analysis 

We first attempt to form direct estimates of y1 and yI1. Because of the odd-even 
alternation in the ratios we have used the Euler transformation z = 2 u ( l +  u/uC)- l  to 
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Table 1. Coefficients of the layer and local susceptibilities, x1 and xl1.  

n 
Layer susceptibility 
C, 

(1) 
Local susceptibility 
C, 
(1.1) 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

1 
3 
7 

19 
49 

127 
321 
813 

2041 
5117 

12 763 
31 791 
78 917 

195 677 
483 997 
1196 081 
2950 439 
7271 905 

1 

2 
4 
8 

18 
36 
80 

170 
382 
832 

1884 
4178 
9526 

21 388 
49 040 

111 130 
256 002 
584 290 

1351 284 
3101 736 
7197 354 

16 597 682 
38 624 304 

map the singularity at v = -vc in the susceptibilities to infinity,leaving the physical 
singularity at U = uc unchanged. Using the exact value of v c  = 4 2 -  1 we have formed 
ratio estimates, such as 

Yl , ,  - 1 = n[(cpUc/c::,)-l], (3.1) 

and extrapolated these using standard Neville table methods (see, for example, Gaunt 
and Guttmann 1974). Results for y1 for the square lattice are given in table 2. These 
suggest 

(3.2) 71 = 1.372 f 0.008. 

We have also analysed the untransformed series, using standard ratio techniques 
modified to take into account the oscillations in the ratio plots characteristic of a 
loose-packed lattice (Gaunt and Guttmann 1974). If the ratio of alternate coefficients 
an/un-2 is denoted r,, then estimates of the exponent are given by the sequence 
y1 ( n )  =$n(vzr,  - 1)+ 1. Linear extrapolants of alternate terms, given by y( l l ) (n)  = 
$[nyP’(n) - (n  -2)y\”(n -2)], take account of both a period 2 oscillation in the ratio 
plots, and a correction term O( l /n2 )  in the ratios. Higher order extrapolants may also 
be defined if the regularity of the series war ra t s  such a refinement. The results of this 
analysis are shown in the last two columns of table 2, and allow us to make the final 
estimate y1 = 1,375 f 0.005. 

For yll on the square lattice, the results of a ratio analysis on the transformed series 
are given in table 3. The linear extrapolants suggest that yll  < 0,027 and the quadratic 

(0) 
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Table 2. Ratio estimates of y1 for the square lattice. a,  are ratio estimates from the 
transformed series, and a‘,“ and a:) are the linear and quadratic extrapolants of the 
sequence {a“}. yip’ and y y ’  are estimates based on alternate ratios of the untransformed 
series. 

n all n 
(2’ 

ff“ 

8 1.2600 
9 1,2697 

10 1.2769 
11 1.2829 
12 1.2883 
13 1.2931 
14 1,2976 
15 1.3017 
16 1.3055 
17 1.3089 

1.3583 
1.3468 
1.3423 
1.3430 
1,3467 
1.3513 
1,3558 
1.3594 
1.3622 
1,3641 

1,3058 
1.3065 
1.3242 
1,3464 
1.3649 
1.3768 
1.3824 
1,3833 
1.3815 
1,3787 

1,3637 
1.3595 
1.3646 
1.3628 
1,3654 
1,3644 
1.3662 
1.3656 
1.3669 
1.3666 

1.3388 
1,4129 
1.3681 
1.3777 
1,3694 
1.3732 
1,3713 
1,3737 
1,3721 
1,3739 

Table 3. Ratio estimates of y l l  for the square lattice. cy, are ratio estimates from the 
transformed series and cy:’ and a:) are the linear and quadratic extrapolants of the 
sequence {cr,,}. E ,  are the averages of successive exponent estimates obtained from linear 
extrapolants of alternate exponent estimates. 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

0.3495 
0,3276 
0,3055 
0.2852 
0.2672 
0.2515 
0.2378 
0.2259 
0,2153 
0.2057 
0.1971 
0.1892 
0.1819 
0.1752 

0.1884 
0,1092 
0,0629 
0.0407 
0.0329 
0.0320 
0,0334 
0,0346 
0,0349 
0.0342 
0,0329 
0.0312 
0.0295 
0.0277 

-0.2651 
-0.2475 
-04686 
-0.0813 
-0.0138 
-0.0262 

0,0426 
0.0437 
0.0372 
0,0287 
0,021 1 
0.0155 
0.0118 
0.0096 

0.0356 
0.0219 

-0.0222 
-0,0263 
-0,0088 
-0.0102 
-0,0095 
-0.0102 
-0.0073 

0.0164 

extrapolants suggest 711 < 0.01. Analysis of the untransformed series suggests a value 
close to 0.00 and we take as our final estimate 

711 = 0 ~ 0 0 1 0 ~ 0 1 .  (3.3) 

The exact result is yl l  = 0.00 (McCoy and Wu 1973), and these results, together with 
the bulk exponent values y = $ and v = 1, satisfy both surface and RG scaling. 

Following Barber et a1 (1978) we have made a direct test of surface and RG scaling 
by forming a series whose divergence is characterised by a ‘breakdown of scaling 
exponent’ 4 = 2y1 - yll  - y - Y. For surface scaling to hold, we require qh = 0. 
Similarly, the exponent B = y l l  - Y + 1 should be zero if RG scaling is to hold. Such a 
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series can be formed from the coefficients of known series. Writing the bulk suscep- 
tibility series ,y and the second spherical moment series p2 as 

and observing that c, - p "n  '-', d ,  - p "n  '+'"-' 7 n  c") - p n n  'I-' and cL'31i - p "n  'll-', it 
is clear that 

e, = [ c j l " ] ' / [ ~ j l ~ ~ ~ ) ( c , ~ , ) ~ ~ ~ ] -  n d  (3.4) 

f ,  = ny+*~j11~' i /[~,d,]1/2 - n'. (3.5) 

and that 

From the sequences {e,} and {f,} we can estimate q5 and 6 both from the sequences {&}, 
where 

(3.6) 

and the sequence of linear extrapolants {d:"}, where 

4:') = $[nq!J, - ( n  - 2)4,-J. (3.7) 

Sequences {e,} and {e? ) }  are defined by (3.6) and (3.7) if e,, is replaced byf,. In forming 
these sequences we have used the bulk susceptibility series given by Sykes et al (1972) 
and the second moment series derived by B G Nickel (1979, private communication). 

The sequences defined above are shown in table 4, from which we can esti- 
mate r$ = 0.00 * 0.02 and 6 = O.OO* 0.01, in agreement with the expected results 
e = dl = 0.0. 

Table 4. Direct tests of the scaling relations. For scaling to hold, 4;) and O v l  should 
approach zero. 

10 
11 
12 
13 
14 
15 
16 
17 

-0.080 99 
-0.040 34 
-0.063 12 
-0.036 95 
-0.052 36 
-0,031 77 
-0.043 00 
-0.028 28 

0.045 11 
0,061 40 
0.026 22 

-0.018 33 
03012 17 
0.001 92 
0.022 55 

-0.002 12 

0.5656 
0.4743 
0.4649 
0,4046 
0.3961 
0.3517 
0.3457 
0.3118 

-0.092 43 
-0.079 20 
-0,038 49 

0,021 45 
-0.016 99 

0.007 56 
-0.006 95 

0.012 88 

4. Discussion 

The significance of the above analysis is not the analysis of the xll  series, since the 
exponent is already known exactly. Rather, by repeating the method of analysis used in 
the analogous SAW problem for which the exponents are not known exactly, we are able 
to assess the reliability of the method of analysis. Since we obtained good agreement 
with the known results in the Ising case, we are more confident of the earlier result of 
Barber et a1 (1978) that RG scaling fails for the square lattice SAW model. Recently 
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Whittington et a1 (1980) showed that the surface susceptibility exponent ys was slightly 
different from the scaling value ys = y + Y, so these two examples of the breakdown of 
scaling for the square lattice SAW model indicate that there may be something rather 
special about the n = 0 limit of the n-vector Hamiltonian when translational invariance 
is destroyed. 

Extending and analysing the y1 series enabled us to make the estimate y1 = 
1.375 f 0.005, compared with the earlier estimate (Whittington et a1 1979a) of 
y1 = 1.372*0.01. This is in precise agreement with the estimate of y1 = 12from surface 
scaling, and with the estimate obtainable from the scaling relation y = v(2 - qL) given 
by Binder and Hohenberg (1972) when coupled with the recent exact result qL = 2 
obtained by Kroemer and Pesch (1979). 

Finally, we remark that the series derivation is a nice example of the applicability of 
the appropriately generalised finite lattice method. 
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